Guide Your Organization through COVID-19

Using American Hospital Association Data and Epidemiologic Models

Advancing Health in America

Our Presenters

Gloria Kupferman, Chief Data Strategy Officer, American Hospital Association

Ayrin Molefe, Ph.D., Director of Statistics and Data Science, American Hospital Associati

- Introductions
- Interactive poll
- Introduction to AHA's Compendium of COVID-19 Models
- Demonstration of AHA's capacity maps
- Description and discussion of two models
- **Q & A**

AHA Compendium of COVID-19 Models

Forecasting the Pandemic's Spread

(Updated April 28, 2020)

NNOVATION

02025 American Hospital Association | April 2020 1 | writes af a org/box/019

https://www.aha.org/guidesreports/2020-04-09-compendium-models-predict-spread-covid-19

People per Hospital Bed (Including Adult ICU), by State

Selected bed type, population group, and State(s) are reflected below

Selections are shown compared to uninsured and poverty rates

+	
100	
	6
	y (9
Ē.	vert
	Po
+	
	-

Hospital service areas (HSAs) are local health care markets for hospital care. An HSA is a collection of ZIP codes whose residents receive most of their hospitalizations from the hospitals in that area. HSAs are defined by assigning ZIP codes to the hospital area where the greatest proportion of their Medicare residents were hospitalized. Minor adjustments are made to ensure geographic contiguity. <u>Most HSAs contain only one hospital</u>. The process results in 3,436 HSAs.

Hospital referral regions (HRRs) represent regional health care markets for tertiary medical care. Each HRR contains at least one hospital that performs major cardiovascular procedures and neurosurgery. HRRs are defined by assigning HSAs to the region where the greatest proportion of major cardiovascular procedures were performed, with minor modifications to achieve geographic contiguity, a minimum population size of 120,000, and a high localization index. The process results in 306 hospital referral regions.

People per Hospital Bed (Including Adult ICU), by HRR

AHA COVID-19 Bed Occupancy Projection Tool

Select bed type, projection scenario, projected date, and percentage of beds committed for non-COVID care.

AHA COVID-19 Bed Occupancy Projection Tool

Selections on bed type, scenario and occupancy are reflected in the curve below

A WalkRun-through of Two COVID-19 Models

Disclaimers

This presentation is an illustration of the use of two models, not about the theory behind the models

The models cited in this presentation are not necessarily a representative sample of existing COVID-19 models

l am a statistician, not an epidemiologist

The COVID-19 Pandemic

There are so (too?) many COVID-19 models

- There is even an "ensemble model" that combines predictions from different models by using averages
- Currently, includes predictions for only the cumulative number of deaths at the national and state levels

National Forecast (as of May 12) Over 100K Deaths by June 1st Actual Deaths as of May 16: 87, 315

Sources:

https://reichlab.io/covid19-forecast-hub/

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

All models are wrong, but some are useful George E. P. Box (1919-2013)

Which model(s) to use?

A model's predictions:

- Are simply educated guesses, not snapshots of the future
- Are only as good as the assumptions they are based on
- Are only as good as the input data
- Tend to be the less reliable (have greater uncertainty) the further out they are into the future

Which models are useful? Some considerations

- Goals (Output):
 - What do you want to predict?
 - Number of cases, deaths, resource use (e.g., beds, ventilators)
 - At which level?
 - Country, state, hospital referral region (HRR), county, specific hospital(s)
- Personal preference:
 - Simplicity
 - Input parameters
 - Ability to change scenarios

• Model:

- What factors does it take into account?
- Is it evolving/learning over time?

AHA Compendium of COVID-19 Models

- Focuses on nine (external) case mapping and projection tools that predict and compare resource demands to capacity
- These tools are not necessarily better than other models but are useful for planning hospital resources

https://www.nytimes.com/2020/05/08/health/coronavirus-pandemic-curve-scenarios.html

https://www.aha.org/guidesreports/2020-04-09-compendium-models-predict-spread-covid-19

The AHA Compendium of Models: A Summary

Case Projection And Capacity Planning Models	Model Type	Estimation level	C.I.	Social Distancing	Mobility	Output table
1. UW-IHME — COVID-19 Forecasting Tool	Hybrid*	State	Yes	Yes	Yes	Yes
2. Harvard University — Regional Hospital Capacity Calculator	Formula- based**	HRR	N/A	No	No	Yes
3. Qventus — Localized COVID-19 Model and Scenario Planner	SEIR	HRR; System; Hospital	No	Yes	No	Yes
4. Penn Medicine — CHIME:COVID-19 Hospital Impact Model for Epidemics	SIR	State; System; Hospital	No	Yes	No	Yes
6. Health Catalyst — Capacity Planning Tool	SIR	County, Hospital	No	Yes	No	Yes
7. Cleveland Clinic — Hospital Impact Modeling	SEIR	Hospital	No	Yes	No	Yes
5. Rush University — Hospital Resource Calculator for COVID-19	5 models including SEIR	Hospital	No	Yes	No	Yes
8. Stanford Medicine — COVID-19 ICU and Floor Projections	Formula- based**	Hospital	N/A	No	No	Yes
Response Tools	Formula- based**	Hospital	N/A	No	No	Yes

*A combination of disease transmission model and statistical (curve-fitting) models

**Outputs are calculated using formulas instead of mechanistic/statistical models.

Two Illustrative Models

IHME Model

- By the Institute of Health Metrics and Evaluation (IHME) at U of Washington
- Dubbed as the "White House model"
- Has been widely cited, and also criticized because it didn't model epidemiological factors such as disease transmission and incubation period
- Has since been modified to address these criticisms

Qventus Model

 Developed by Qventus (https://qventus.com) – provides a platform that "incorporates artificial intelligence, behavioral science, and data science to deliver a close-loop system for automating patient flow"

Two Illustrative Models

IHME Model

Qventus Model

o State level

• Simple to use

• Hospital(s) level

o Needs more user input

IHME Model

IHME Model

Only requires selecting the country or state from a drop-down menu for country or state

	a Q _b
Ukraine	-
United Kingdom	
 United States of America 	
Alabama	
Alaska	- 1
Arizona	
Arkansas	
California	-

Country or state level:

- Percent change in mobility as a function of when social distancing was implemented and/or lifted
- Daily infection and testing
- o Daily deaths
- Cumulative deaths
- o Daily resource use: all beds, ICU beds, ventilators

IHME Model Output 1:

Illinois Predicted Change in Mobility*

- Mobility decreases with social distancing
- A 55% drop in mobility on Apr 1st
- A 10% increase in mobility following easing of stay-athome restrictions

IHME Model Output 2: Illinois Predicted Daily Infections and Testing*

Graph shows

- Predicted infections:
 - Are much higher than the confirmed infections up to May 10
 - Have wide confidence intervals (shaded region)
 - Ex.: Predicted infections
 on June 1st is between
 623 and 23,325!
- Daily tests:
 - Predicted to go up to 25K s
 by mid-June

*As of May 16 Source: <u>https://covid19.healthdata.org/united-</u> <u>states-of-america/illinois</u>

IHME Model Output 3:

Illinois Predicted Resource Demand*

Output #5:

- Total beds:
 - Predicted demand is below bed capacity (~15K) throughout the whole period
- ICU beds:
 - Predicted demand will not exceed total ICU bed capacity (~1.1K beds)

*As of May 16 Source: <u>https://covid19.healthdata.org/united-</u> <u>states-of-america/illinois</u>

Qventus Model

Qventus Model

- Select hospital
- Enter:

PANDEMIC RESPONSE & SOCIAL DISTANCING

MARKET

⊕ HOSPITAL ASSUMPTIONS

⊕ COVID-19 ASSUMPTIONS

Hospital(s) or HRR level:

- Total new COVID-19 admits in the next 7 days (Med-Surg, ICU, ICU+Ventilator)
- Days remaining until capacity is reached (Med-Surg, ICU, ICU+Ventilator)
- Total deaths over the next 45 days
- Daily resource use: Med-Surg, ICU, ventilator:
- Daily PPE and PPE nursing shifts

Qventus Model: Selecting Hospital

- Select hospital from the dropdown menu:
 - Edward Hospital in Naperville, IL
 - HRR #133: Hinsdale, IL

- Model pre-populates the HRR parameters:
 - Number of cases: 3,247
 - Population size: 517,862
 - Case growth rate: 2.92% per day

Hospital drop-down menu Localized COVID-19 Model and Scenario Planner Edward Hospital Fort Smith AR Mercy Hospital Fort Smith (FKA St Edward Mercy Medical Center) Hinsdale IL Edward Hospital (FKA Edward Heart Hospital) Melrose Park IL 3313 CASES IN THE HINSDALE IL REGION(S) HRR POPULATION: 517,862 HRR CASE GROWTH RATE: 2.86% / DAY

Qventus Model: Social Distancing, PCR Testing & Mask Inputs

Edward Hospital, HRR 133

Enter:

- a. Social distancing dates
- b. PCR tests per day
- c. Mask effectiveness

https://www.dph.illinois.gov/covid19/covid19-statistics

Illinois Policy Organization

https://www.illinoispolicy.org/what-you-need-to-know-aboutcoronavirus-in-illinois/

Qventus Model: Testing Input

Edward Hospital, HRR 133

Source for PCR testing data

Illinois Department of Public Health https://www.dph.illinois.gov/covid19/covid1 9-statistics Daily tests over the past five days (as of 5/17)

Note: Based on Illinois data (not data specific to HRR)

Qventus Model: Mask Input Edward Hospital, HRR 133 Calculating Mask Effectiveness

Starting May 1, Illinois residents were ordered to wear masks when in public

Mask Effectiveness =

(% of the population wearing masks) X

(% reduction in the likelihood of an infected person infecting others because of the mask)

= 50% X 80%

= 40%

Source: Illinois Policy Organization <u>https://www.illinoispolicy.org/what-you-need-to-know-about-coronavirus-in-illino</u>

Qventus Model: Market Inputs

Edward Hospital, HRR 133

Enter:

- a. HRR known cases
- b. HRR population
- c. Market share (%) = $\frac{Hospital \ bed \ capacity}{HRR \ bed \ capacity}$

Note: Pre-populated for the selected HRR

⊕ MARKET

Qventus Model: Hospital Inputs

Edward Hospital, HRR 133

Enter: Hospital assumptions for Med-Surg, adult ICU, Vents*

- a. Beds available
- b. Additional surge capacity (optional)
- c. Non-COVID occupancy
- d. Current COVID patients (optional)

Note: Pre-populated for the selected hospital using data from Definitive Healthcare

Bed Capacity and Current Patients Med-Surg Adult ICU Vents Beds 273 25 25 Available Add'l Surge 0 0 0 Capacity Non-COVID 81.6 89.6 60 Occ % Current COVID Patients

Qventus Model: COVID-19 Inputs

Edward Hospital, HRR 133

Enter: Level of Care and LOS*

- a. Non-critical care (%)
- b. Critical care (%)
- c. Critical care with vents (%)
- d. Daily new infection growth rate
- e. Percent of infections being reported
- f. Asymptomatic rate

Doubling Time =
$$\frac{\ln(2)}{\ln(1 + growth \, rate)} = \frac{\ln(2)}{\ln(1.02493)} = 28.1$$

***Note:** Pre-populated based on local age demographics, state reports, HCUP, recent literature, etc.

Qventus Model Output 1:

Predicted Med-Surg Beds (Edward Hospital, HRR 133)

- Edward's daily Med-Surg bed demand are predicted to decrease within the next 45 days (from 27 beds on 5/17 to 5 beds on 7/1).
- The demand throughout the period is below the 50 beds available for COVID-19 patients at Edward Hospital

Qventus Model Output 2:

Predicted ICU Beds (Edward Hospital, HRR 133)

- Edward's daily ICU bed demand are predicted to decrease within the next 45 days (from 10 beds on 5/17 to 2 beds on 7/1)
- But with only 3 ICU beds available for non-COVID patients, Edward Hospital is predicted to be short of ICU beds from 5/17 up to 6/24.

Concluding Thoughts

Some models are useful but...

- Be clear about your goals
- Simplicity is convenient, but context matters
- Models, data and assumptions are changing over time
- Predictions (whether presented as such or not) are not merely points. They are intervals.
- Be humble. Nobody really knows what is going to happen!

Thank you!

Gloria Kupferman • Ayrin Molefe Center for Health Innovation American Hospital Association gkupferman@aha.org • amolefe@aha.org

Questions?